

Arylation of the Baylis-Hillman Adducts

Deevi Basavaiah* and Kannan Muthukumaran

School of Chemistry, University of Hyderabad, Hyderabad-500 046, India

Received 8 October 1997; revised 3 March 1998; accepted 5 March 1998

Abstract: Palladium catalyzed arylation of the Baylis-Hillman adducts, methyl 3-hydroxy-2-methylenealkanoates, has been described. © 1998 Elsevier Science Ltd. All rights reserved.

In recent years there has been much focus and emphasis on the Heck reaction for the construction of carboncarbon bond at the vinylic position involving palladium catalyzed coupling of haloarenes and haloalkenes with alkenes. 1-3 A variety of substituted and functionalized alkenes have been successfully arylated or alkenylated via the Heck reaction to produce synthetically useful molecules. The Heck reaction i.e. arylation of allylic alcohols has been well studied to provide arylated saturated carbonyl compounds or arylated allyl alcohols by changing the reaction conditions. 4-6 Also the Heck reaction of α , β -unsaturated esters has been well documented to produce arylated α, β-unsaturated esters.^{7,8} However the Heck reaction i.e. arylation of alkenes possessing both allylic alcohol and α, β-unsaturated ester moieties in which carbon-carbon double bond is an integral part of both allyl alcohol and α. β-unsaturated ester mojeties, has not been studied. Such a study is highly desirable and will be useful as this will further expand the scope of the Heck reaction in synthetic organic chemistry. The Baylis-Hillman reaction provides an easy access for such interesting class of alkenes having both allyl alcohol and α , β -unsaturated ester moieties. ⁹⁻¹⁸ As a part of our research program on the Baylis-Hillman reaction, 15-18 we herein report the Heck reaction i.e. arylation of the Baylis-Hillman adducts, methyl 3-hydroxy-2-methylenealkanoates (obtained via the DABCO catalyzed coupling of methyl acrylate with aldehydes (Equation 1)) under the influence of palladium acetate, thus providing a very simple and convenient methodology for the synthesis of methyl 2-(arylmethyl)-3-oxoalkanoates, an important and useful class of synthons.

We have first examined the reaction between methyl 3-hydroxy-2-methylene-3-phenylpropanoate (1a) and bromobenzene under the catalytic influence of palladium acetate. The best results were obtained when a

Table 1: Arylation of the Baylis-Hillman Adducts^a

R	Ar	Time	Product	Yield ^b
		(h)		(%)
Ph	Ph	10	2 °	81
Ph	4-CH ₃ C ₆ H ₄	10	3	76
Ph	α-Naphthyl	7	4	83
4-i-C ₃ H ₇ C ₆ H ₄	Ph	10	5°	75
4-i-C ₃ H ₇ C ₆ H ₄	4-CH ₃ C ₆ H ₄	10	6°	76
4-i-C ₃ H ₇ C ₆ H ₄	α-Naphthyl	8	7°	82
2-OCH₃C ₆ H₄	Ph	18	8 °	67
4-CH ₃ C ₆ H ₄	Ph	12	9°	80
4-ClC ₆ H₄	Ph	8	10°	60
i-C ₃ H ₇	Ph	10	11 ^d	61
i-C ₃ H ₇	4-CH ₃ C ₆ H ₄	7	12 ^d	76
n-C ₅ H ₁₁	Ph	9	13 ^d	64
n-C₅H ₁₁	α-Naphthyl	7	14 ^d	79
	Ph Ph Ph 4-i-C ₃ H ₇ C ₆ H ₄ 4-i-C ₃ H ₇ C ₆ H ₄ 4-i-C ₃ H ₇ C ₆ H ₄ 2-OCH ₃ C ₆ H ₄ 4-CH ₃ C ₆ H ₄ 4-ClC ₆ H ₄ i-C ₃ H ₇ i-C ₃ H ₇	Ph Ph Ph 4-CH ₃ C ₆ H ₄ Ph α -Naphthyl 4-i-C ₃ H ₇ C ₆ H ₄ Ph 4-i-C ₃ H ₇ C ₆ H ₄ 4-CH ₃ C ₆ H ₄ 4-i-C ₃ H ₇ C ₆ H ₄ Ph 4-CH ₃ C ₆ H ₄ Ph 4-ClC ₆ H ₄ Ph i-C ₃ H ₇ Ph i-C ₃ H ₇ 4-CH ₃ C ₆ H ₄ n-C ₅ H ₁₁ Ph	Ph Ph 10 Ph 4-CH ₃ C ₆ H ₄ 10 Ph α -Naphthyl 7 4-i-C ₃ H ₇ C ₆ H ₄ Ph 10 4-i-C ₃ H ₇ C ₆ H ₄ 4-CH ₃ C ₆ H ₄ 10 4-i-C ₃ H ₇ C ₆ H ₄ α -Naphthyl 8 2-OCH ₃ C ₆ H ₄ Ph 18 4-CH ₃ C ₆ H ₄ Ph 12 4-ClC ₆ H ₄ Ph 8 i-C ₃ H ₇ Ph 10 i-C ₃ H ₇ 4-CH ₃ C ₆ H ₄ 7 n-C ₃ H ₁₁ Ph 9	Ph Ph Ph 10 2^c Ph 4-CH ₃ C ₆ H ₄ 10 3 Ph α -Naphthyl 7 4 4-i-C ₃ H ₇ C ₆ H ₄ Ph 10 5 ^c 4-i-C ₃ H ₇ C ₆ H ₄ 4-CH ₃ C ₆ H ₄ 10 6 ^c 4-i-C ₃ H ₇ C ₆ H ₄ α -Naphthyl 8 7 ^c 2-OCH ₃ C ₆ H ₄ Ph 18 8 ^c 4-CH ₃ C ₆ H ₄ Ph 12 9 ^c 4-CH ₃ C ₆ H ₄ Ph 8 10 ^c i-C ₃ H ₇ Ph 10 11 ^d i-C ₃ H ₇ 4-CH ₃ C ₆ H ₄ 7 12 ^d n-C ₅ H ₁₁ Ph 9 13 ^d

a) All reactions were carried out in 1mM scale in THF at reflux temperature for 7-18 h.

solution of methyl 3-hydroxy-2-methylene-3-phenylpropanoate (1a) (1 mM) and bromobenzene (2 mM) in THF (3 mL) was refluxed for 10h in the presence of Pd(OAc)₂ (2 mol%), NaHCO₃ (2.5 mM) and n-Bu₄NBr (1 mM), thus providing methyl 2-benzyl-3-oxo-3-phenylpropanoate (2) after column chromatography (5%

b) Yields of the products obtained after column chromatography (using 5% EtOAc in hexane, silica gel). The molecules 2, 3, 5-14 were obtained as colorless liquids and the molecule 4 was obtained as a colorless solid.

c) The molecules 2, 5- 10 contain ≈5% impurity and were further purified by preparative HPLC (Shim-pack PREP-ODS column, methanol). All these compounds 2-10 gave satisfactory IR, ¹H NMR, ¹³C NMR, mass spectral and elemental analysis.

d) ¹H NMR and ¹³C NMR spectra show that these molecules contain ≈5-8% impurity.

EtOAc in hexane, silica gel) in 81% yield. This molecule is contaminated with ≈5% impurity. However purification by preparative HPLC (Shim-pack PREP-ODS column using methanol as solvent) provided the pure methyl 2-benzyl-3-oxo-3-phenylpropanoate (2).

Encouraged by this result we have subjected a variety of the Baylis-Hillman adducts to arylation using various aryl bromides which produced the desired methyl 2-(arylmethyl)-3-oxoalkanoates (Table 1, Equation 2).

OH O OMe + Ar-Br
$$\frac{Pd(OAc)_2(cat.), n\text{-Bu}_4NBr}{NaHCO_3, THF, reflux}$$
 R OMe (eq.2)

In conclusion, the arylation of the Baylis-Hillman adducts, methyl 3-hydroxy-2-methylenealkanoates, provides an easy access to methyl 2-(arylmethyl)-3-oxoalkanoates, an important class of organic synthons, thus highlighting the importance and applications of both the Heck and Baylis-Hillman reactions.

Acknowledgments: We thank DST (New Delhi) for funding this project. KMK thanks UGC (New Delhi) for his research fellowship. We also thank UGC (New Delhi) for COSIST and Special Assistance Programs in Organic Synthesis in the School of Chemistry, University of Hyderabad.

EXPERIMENTAL

The melting points were recorded on Superfit melting point apparatus and are uncorrected. IR spectra were recorded on Jasco-FT-IR model 5300 spectrometer using samples as neat liquid or solution in CH_2Cl_2 . ¹H NMR (200 MHz) and ¹³C NMR (50 MHz) spectra were recorded on Bruker-AC-200 spectrometer using chloroform-d as solvent and tetramethylsilane (TMS, $\delta = 0$ ppm) as internal standard. Mass spectra were recorded on micromass VG 7070H instrument. Elemental analyses were performed on Perkin-Elmer 240C-CHN analyser. HPLC analyses were performed on Shimadzu LC-10AD instrument equipped with SPD-10A UV-VIS detector using Shim-pack PREP-ODS column and methanol as solvent.

General Procedure for the preparation of methyl 2-arylmethyl-3-oxo-alkanoates (2-14):

A solution of methyl 3-hydroxy-2-methylenealkanoate (1) (1 mM) and aryl bromide (2 mM) in THF (3mL) was refluxed for 7-18 hours (as mentioned in the Table 1) in the presence of Pd(OAc)₂ (2 mol%, 0.02 mM, 4.5 mg), NaHCO₃ (2.5 mM, 210 mg) and n-Bu₄NBr (1 mM, 322 mg). Then the reaction mixture was cooled, diluted with water and extracted with ether. The organic layer was dried over anhydrous Na₂SO₄ and solvent

was evaporated. The crude product obtained was purified by column chromatography (5% EtOAc in hexane, silica gel). The molecules 2, 5-11 contain ≈5% impurities and were further purified by preparative HPLC (Shim-pack PREP-ODS column) using methanol as solvent. The compounds 12-14 contain ≈5-8% impurities as indicated by ¹H NMR and ¹³C NMR spectral analysis. Attempts to further purification of the molecules 12-14 by preparative HPLC were not successful.

Methyl 2-benzyl-3-oxo-3-phenylpropanoate (2):

Yield: 81%; IR (neat) vmax/cm⁻¹: 1685, 1741; ¹H NMR: δ 3.33 (d, 2H, J= 7.0 Hz), 3.63 (s, 3H), 4.64 (t, 1H, J= 7.0 Hz), 7.11-7.62 (m, 8H), 7.89-8.05 (m, 2H); ¹³C NMR: δ 34.83, 52.40, 55.82, 126.61, 128.50, 128.59, 128.68, 128.82, 133.51, 136.13, 138.32, 169.66, 194.39; MS (m/z): 268 (M⁺); Analysis calculated for C₁₇H₁₆O₃: C, 76.09; H, 6.01; found: C, 76.15; H, 6.03.

Methyl 2-(4-methylphenyl)methyl-3-oxo-3-phenylpropanoate (3):

Yield: 76%; IR (neat) νmax/cm⁻¹: 1687, 1741; ¹H NMR: δ 2.27 (s, 3H), 3.28 (d, 2H, J= 7.0 Hz), 3.62 (s, 3H), 4.61 (t, 1H, J= 7.0 Hz), 7.01-7.63 (m, 7H), 7.94 (d, 2H, J= 7.2 Hz); ¹³C NMR:δ 20.97, 34.46, 52.43, 56.04, 128.72, 129.23, 133.52, 135.28, 136.15, 169.77, 194.47; MS (m/z): 282 (M⁺); Analysis calculated for $C_{18}H_{18}O_3$: C, 76.57; H, 6.42; found: C, 76.36; H, 6.45.

Methyl 2-(naphth-1-ylmethyl)-3-oxo-3-phenylpropanoate (4):

Yield: 83%; M. P: 68-70°C; IR (CH₂Cl₂) νmax/cm⁻¹: 1676, 1738; ¹H NMR: δ 3.63 (s, 3H), 3.82 (d, 2H, J= 6.8 Hz), 4.83 (t, 1H, J= 6.8 Hz), 7.17- 8.19 (m, 12H); ¹³C NMR: δ 31.81, 52.50, 54.59, 123.16, 125.41, 125.59, 126.27, 127.25, 127.53, 128.53, 128.61, 129.00, 131.63, 133.47, 133.93, 134.14, 136.26, 169.88, 194.54; MS (m/z): 318 (M⁺); Analysis calculated for $C_{21}H_{18}O_3$: C, 79.22; H, 5.69; found: C, 79.26; H, 5.67.

Methyl 2-benzyl-3-(4-(1-methylethyl)phenyl)-3-oxopropanoate (5):

Yield: 75%; IR (neat) vmax/cm⁻¹: 1682, 1741; ¹H NMR: δ 1.24 (d, 6H, J= 6.8 Hz), 2.92 (sept, 1H, J=6.8 Hz), 3.32 (m, 2H), 3.63 (s, 3H), 4.63 (t, 1H, J= 7.2 Hz), 7.12- 7.35 (m, 7H), 7.89 (d, 2H, J= 8.4 Hz); ¹³C NMR: δ 23.61, 34.31, 34.95, 52.50, 55.93, 126.66, 126.91, 128.58, 128.94, 129.02, 134.07, 138.62, 155.26, 169.91, 193.93; MS (m/z): 310 (M⁺); Analysis calculated for C₂₀H₂₂O₃: C, 77.39; H, 7.14; found: C, 77.45; H, 7.18.

Methyl 2-(4-methylphenyl)methyl-3-(4-(1-methylethyl)phenyl)-3-oxopropanoate (6):

Yield:76%; IR (neat) νmax/cm⁻¹: 1682, 1741; ¹H NMR:δ 1.25 (d, 6H, J=6.8 Hz), 2.28 (s, 3H), 2.93 (sept, 1H, J=6.8 Hz), 3.28 (m, 2H), 3.64 (s, 3H), 4.60 (t, 1H, J=7.0 Hz), 7.01-7.39 (m, 6H), 7.89 (d, 2H, J=8 Hz); ¹³C NMR:δ 21.03, 23.62, 34.31, 34.54, 52.48, 56.09, 126.90, 128.79, 129.03, 129.27, 134.08, 135.53, 136.16, 155.23, 169.98, 194.00; MS (m/z): 324 (M⁺); Analysis calculated for C₂₁H₂₄O₃: C, 77.75; H, 7.45; found: C,

77.65; H, 7.42.

Methyl 3-(4-(1-methylethyl)phenyl)-2-(naphth-1-ylmethyl)-3-oxopropanoate (7):

Yield: 82%; IR (neat) vmax/cm⁻¹: 1682, 1739; ¹H NMR: δ 1.22 (d, 6H, J= 7.0 Hz), 2.91 (m, 1H), 3.63 (s, 3H), 3.80 (d, 2H, J= 7.2 Hz), 4.81 (t, 1H, J= 7.2 Hz), 7.15- 8.08 (m, 11H); ¹³C NMR: δ 23.57, 31.90, 34.28, 52.51, 54.71, 123.33, 125.51, 125.63, 126.29, 126.82, 127.33, 127.55, 128.95, 129.05, 131.81, 134.08, 134.30, 134.44, 155.18, 170.10, 194.09; MS (m/z): 360 (M⁺); Analysis calculated for $C_{24}H_{24}O_3$: C, 79.97; H, 6.71; found: C, 80.21; H, 6.68.

Methyl 2-benzyl-3-(2-methoxyphenyl)-3-oxopropanoate (8):

Yield: 67%; IR (neat) vmax/cm⁻¹: 1672, 1739; ¹H NMR: δ 3.27 (m, 2H), 3.64 (s, 3H), 3.85 (s, 3H), 4.67 (t, 1H, J= 6.8 Hz), 6.85- 7.70 (m, 9H); ¹³C NMR: δ 34.61, 52.02, 55.24, 60.10, 111.49, 120.86, 126.32, 126.90, 128.28, 128.88, 131.04, 134.17, 138.99, 158.31, 170.41, 196.03; MS (m/z): 298 (M⁻); Analysis calculated for C₁₈H₁₈O₄: C, 72.47; H, 6.08; found: C, 72.24; H, 6.10.

Methyl 2-benzyl-3-(4-methylphenyl)-3-oxopropanoate (9):

Yield: 80%; IR (neat) vmax/cm⁻¹: 1682, 1741; ¹H NMR: δ 2.39 (s, 3H), 3.31 (m, 2H), 3.62 (s, 3H), 4.62 (t, 1H, J= 7.2 Hz), 7.15- 7.30 (m, 7H), 7.85 (d, 2H, J= 8 Hz); ¹³C NMR: δ 21.60, 34.89, 52.41, 55.80, 126.61, 128.52, 128.82, 128.85, 129.43, 133.72, 138.51, 144.52, 169.83, 193.95; MS (m/z): 282 (M⁺); Analysis calculated for $C_{18}H_{18}O_3$: C, 76.57; H, 6.42; found: C, 76.65; H, 6.39.

Methyl 2-benzyl-3-(4-chlorophenyl)-3-oxopropanoate (10):

Yield: 60%; IR (neat) vmax/cm⁻¹: 1687, 1741; ¹H NMR: δ 3.32 (d, 2H, J=7.2 Hz), 3.64 (s, 3H), 4.58 (t, 1H, J= 7.6 Hz), 7.16- 7.47 (m, 7H), 7.86 (m, 2H); ¹³C NMR: δ 34.80, 52.53, 55.88, 126.73, 128.57, 128.83, 129. 02, 130.02, 134.56, 138.15, 140.07, 169.41, 193.24; MS (m/z): 302 (M⁺); Analysis calculated for C₁₇H₁₅O₃Cl: C, 67.44; H, 4.99; found: C, 67.31; H, 5.01.

Methyl 2-benzyl-4-methyl-3-oxopentanoate (11):

Yield: 61%; IR (neat) vmax/cm⁻¹: 1714, 1743; ¹H NMR: δ 0.86 (d, 3H, J=6.8 Hz), 1.04 (d, 3H, J= 6.8 Hz), 2.60 (m, 1H), 3.15 (d, 2H, J= 7.4 Hz), 3.68 (s, 3H), 3.95 (t, 1H, J= 7.4 Hz), 7.05- 7.36 (m, 5H); ¹³C NMR: δ 17.67, 17.76, 34.51, 41.33, 52.34, 58.54, 126.67, 128.55, 128.92, 138.42, 169.54, 208.29.

Methyl 2-(4-methylphenyl)methyl-4-methyl-3-oxopentanoate (12):

Yield: 76%; IR (neat) vmax/cm⁻¹: 1714, 1745; ¹H NMR: δ 0.89 (d, 3H, J=6.8 Hz), 1.05 (d, 3H, J= 6.8 Hz), 2.29 (s, 3H), 2.60 (m, 1H), 3.11 (d, 2H, J=7.2 Hz), 3.68 (s, 3H), 3.93 (t, 1H, J= 7.2 Hz), 7.05 (m, 4H); ¹³C NMR: δ 17.65, 17.73, 20.94, 34.06, 41.25, 52.25, 58.57, 128.70, 129.16, 135.21, 136.09, 169.55, 208.37.

Methyl 2-benzyl-3-oxooctanoate (13):

Yield: 64%; IR (neat) vmax/cm⁻¹: 1716, 1743; ¹H NMR: δ 0.83 (t, 3H, J=6.8 Hz), 1.05-1.62 (m, 6H), 2.18-2.61 (m, 2H), 3.15 (d, 2H, J=7.6 Hz), 3.68 (s, 3H), 3.80 (t, 1H, J= 7.6 Hz), 7.05-7.36 (m, 5H); ¹³C NMR: δ 13.74, 22.26, 22.89, 30.99, 34.10, 42.75, 52.21, 60.30, 126.57, 128.48, 128.72, 138.22, 169.51, 204.54.

Methyl 2-(naphth-1-ylmethyl)-3-oxooctanoate (14):

Yield: 79%; IR (neat) vmax/cm⁻¹: 1716, 1745; ¹H NMR: δ 0.82 (t, 3H, J= 6.6 Hz), 1.00-1.55 (m, 6H), 2.10-2.58 (m, 2H), 3.67 (m, 5H), 4.00 (t, 1H, J= 7.6 Hz), 7.25-8.05 (m, 7H); ¹³C NMR: δ 13.78, 22.29, 22.90, 30.99, 31.20, 43.02, 52.37, 59.06, 123.16, 125.44, 125.64, 126.27, 127.26, 127.56, 129.01, 131.50, 133.96, 134.10, 169.79, 204.83.

REFERENCES

- 1. Meijere, A. de.; Meyer, F. E.; Angew. Chem. Int. Ed. Engl., 1994, 33, 2379-2411.
- 2. Dieck, H. A.; Heck, R. F.; J. Am. Chem. Soc., 1974, 96, 1133-1136, J. Org. Chem., 1975, 40, 1083-1090
- 3. a) Jeffery, T.; J. Chem. Soc., Chem. Commun., 1984, 1287-1289. b) Kang, S.-K.; Jung, K.-Y.; Park, C.-H.; Namkoong, E.-Y.; Kim, T.-H.; Tetrahedron Lett., 1995, 36, 6287-6290.
- 4. Kang, S.-K.; Lee, H.-W.; Jang, S.-B.; Kim, T.-H.; Pyun, S.-J.; J. Org. Chem., 1996, 61, 2604-2605.
- 5. Melpolder, J. B.; Heck, R. F.; J. Org. Chem., 1976, 41, 265-272.
- 6. Chalk, A. J.; Magennis, S. A.; J. Org. Chem., 1976, 41, 273-278.
- 7. Moreno-Manas, M.; Perez, M.; Pleixats, R.; Tetrahedron Lett., 1996, 37, 7449-7452.
- 8. Beller, M.; Riermeier, T. H.; Tetrahedron Lett., 1996, 37, 6535-6538.
- 9. Ciganek, E. Organic Reactions, 1997, 51, 201-350 (Paquette, L.A. Editor) John Wiley & Sons, New York.
- 10. Basavaiah, D.; Dharma Rao, P.; Suguna Hyma, R.; *Tetrahedron.*, 1996, 52, 8001-8062 and references cited therein.
- 11. Drewes, S. E.; Roos, G. H. P.; Tetrahedron., 1988, 44, 4653-4670.
- 12. Amri, H.; Villieras, J.; Tetrahedron Lett., 1986, 27, 4307-4308.
- 13. Hoffmann, H. M. R.; Eggert, U.; Poly, W.; Angew. Chem. Int. Ed. Engl., 1987, 26, 1015-1017.
- 14. Bailey, M., Marko, I. E., Ollis, W. D., Rasmussen, P. R., Tetrahedron Lett., 1990, 31, 4509-4512.
- 15. Basavaiah, D.; Gowriswari, V. V. L.; Tetrahedron Lett., 1986, 27, 2031-2032.
- 16. Basavaiah, D.; Sarma, P. K. S.; J. Chem. Soc., Chem. commun., 1994, 955-957.
- 17. Basavaiah, D.; Pandiaraju, S.; Tetrahedron Lett., 1995, 36, 757-758.
- 18. Basavaiah, D.; Pandiaraju, S.; Sarma, P. K. S.; Tetrahedron Lett., 1994, 35, 4227-4230.